Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior.

نویسندگان

  • Needhi Bhalla
  • Sue Biggins
  • Andrew W Murray
چکیده

The budding yeast YCS4 gene encodes a conserved regulatory subunit of the condensin complex. We isolated an allele of this gene in a screen for mutants defective in sister chromatid separation or segregation. The phenotype of the ycs4-1 mutant is similar to topoisomerase II mutants and distinct from the esp1-1 mutant: the topological resolution of sister chromatids is compromised in ycs4-1 despite normal removal of cohesins from mitotic chromosomes. Consistent with a role in sister separation, YCS4 function is required to localize DNA topoisomerase I and II to chromosomes. Unlike its homologs in Xenopus and fission yeast, Ycs4p is associated with chromatin throughout the cell cycle; the only change in localization occurs during anaphase when the protein is enriched at the nucleolus. This relocalization may reveal the specific challenge that segregation of the transcriptionally hyperactive, repetitive array of rDNA genes can present during mitosis. Indeed, segregation of the nucleolus is abnormal in ycs4-1 at the nonpermissive temperature. Interrepeat recombination in the rDNA array is specifically elevated in ycs4-1 at the permissive temperature, suggesting that the Ycs4p plays a role at the array aside from its segregation. Furthermore, ycs4-1 is defective in silencing at the mating type loci at the permissive temperature. Taken together, our data suggest that there are mitotic as well as nonmitotic chromosomal abnormalities associated with loss of condensin function in budding yeast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simple biophysical model emulates budding yeast chromosome condensation

Mitotic chromosomes were one of the first cell biological structures to be described, yet their molecular architecture remains poorly understood. We have devised a simple biophysical model of a 300 kb-long nucleosome chain, the size of a budding yeast chromosome, constrained by interactions between binding sites of the chromosomal condensin complex, a key component of interphase and mitotic chr...

متن کامل

A Genetic Screen for Functional Partners of Condensin in Fission Yeast

Mitotic chromosome condensation is a prerequisite for the accurate segregation of chromosomes during cell division, and the conserved condensin complex a central player of this process. However, how condensin binds chromatin and shapes mitotic chromosomes remain poorly understood. Recent genome-wide binding studies showing that in most species condensin is enriched near highly expressed genes s...

متن کامل

Condensin suppresses recombination and regulates double-strand break processing at the repetitive ribosomal DNA array to ensure proper chromosome segregation during meiosis in budding yeast

During meiosis, homologues are linked by crossover, which is required for bipolar chromosome orientation before chromosome segregation at anaphase I. The repetitive ribosomal DNA (rDNA) array, however, undergoes little or no meiotic recombination. Hyperrecombination can cause chromosome missegregation and rDNA copy number instability. We report here that condensin, a conserved protein complex r...

متن کامل

Levels of Ycg1 Limit Condensin Function during the Cell Cycle

During mitosis chromosomes are condensed to facilitate their segregation, through a process mediated by the condensin complex. Although several factors that promote maximal condensin activity during mitosis have been identified, the mechanisms that downregulate condensin activity during interphase are largely unknown. Here, we demonstrate that Ycg1, the Cap-G subunit of budding yeast condensin,...

متن کامل

Sgo1 Regulates Both Condensin and Ipl1/Aurora B to Promote Chromosome Biorientation

Correct chromosome segregation is essential in order to prevent aneuploidy. To segregate sister chromatids equally to daughter cells, the sisters must attach to microtubules emanating from opposite spindle poles. This so-called biorientation manifests itself by increased tension and conformational changes across kinetochores and pericentric chromatin. Tensionless attachments are dissolved by th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 2002